
Identification of Cerebral Small Vessel Disease
Using Multiple Instance Learning

Liang Chen1, Tong Tong1, Chin Pang Ho1, Rajiv Patel2, David Cohen2, Angela
C. Dawson3, Omid Halse3, Olivia Geraghty1, Paul E.M. Rinne1, Christopher J.

White1, Tagore Nakornchai1, Paul Bentley1, and Daniel Rueckert1

1 Imperial College London, London, United Kingdom
2 Northwick Park Hospital, London, United Kingdom

3 Imperial College Healthcare NHS Trust, London, United Kingdom

Abstract. Cerebral small vessel disease (SVD) is a common cause of
ageing-associated physical and cognitive impairment. Identifying SVD is
important for both clinical and research purposes but is usually depen-
dent on radiologists’ evaluation of brain scans. Computer tomography
(CT) is the most widely used brain imaging technique but for SVD
it shows a low signal-to-noise ratio, and consequently poor inter-rater
reliability. We therefore propose a novel framework based on multiple
instance learning (MIL) to distinguish between absent/mild SVD and
moderate/severe SVD. Intensity patches are extracted from regions with
high probability of containing lesions. These are then used as instances in
MIL for the identification of SVD. A large baseline CT dataset, consist-
ing of 590 CT scans, was used for evaluation. We achieved approximately
75% accuracy in classifying two different types of SVD, which is high for
this challenging problem. Our results outperform those obtained by ei-
ther standard machine learning methods or current clinical practice.

1 Introduction

The World Health Organization (WHO) states that stroke is the second major
cause of death in the world during 2000 and 2012. Stroke, which is a cerebrovascu-
lar accident, is the loss of brain function caused by the lack of blood supply [16].
It may lead to long-term disability. Ischemic stroke and hemorrhagic stroke are
two different categories of strokes that require different treatments [6]. Ischemic
stroke accounts for approximately 80% of all strokes [7]. Intravenous thrombol-
ysis with recombinant tissue plasminogen activator (rt-PA) is the recommended
therapy for acute ischemic stroke that reduces severe disability but causes dete-
rioration due to symptomatic intracranial hemorrhage (SICH) in approximately
6% [18]. [4] demonstrates that cerebral SVD is associated with increased risk of
ischemic stroke. Hypertensive SVD is the most common mechanism of hemor-
rhagic stroke [6]. In order to reduce the rate of SICH, which is associated with
the worst outcome of stroke, management of SVD is pivotal. Cerebral SVD refers
to a group of pathological aetiologies that affect the brain [12]. However, in this
paper we will use the term to describe ischemic consequences of white matter



(WM) lesions. Figure 1 presents examples of cerebrums with different kinds of
SVD.

Fig. 1: Examples of CT images of the brain: (a) normal brain appearance, (b)
brain with mild cerebral SVD, (c) brain with moderate SVD, and (d) cerebrum
with severe SVD. The red arrows point out where the lesions are.

Advanced neuroimaging techniques have been widely used in the diagnosis of
stroke. It is normally recommended that patients should undergo either magnetic
resonance (MR) or CT imaging [19]. Diffusion-weighted imaging (DWI) and
T2-fluid attenuated inversion recovery (FLAIR) should be included in the MR
sequences, which are able to show any acute or chronic lesions. Although MR
is the gold standard, CT is more frequently used in the acute phase of stroke
treatment. This is due to the fact that there is typically no MR scanner access
in emergency rooms in hospitals. For patients suffering from acute stroke it is
therefore desirable to have reliable and automatic image analysis techniques for
CT images.

There have been a large number of studies focusing on the automatic analysis
of brain MR images. For instance, in Alzheimer’s Disease (AD), machine learning
techniques have been extensively used to classify controls and patients. However,
there are very few works that focus on the classification of subjects suffering from
stroke and even fewer which use CT images [5]. The cutting-edge studies on CT
images, including [3], [17], and [9], are typically based on statistical values and
threshold. These methods are fairly simple that it is difficult to apply to large
datasets. To the best of our knowledge no machine learning approach has been
proposed for the identification of SVD in a large dataset of CT images.

Fazekas et al. [8] proposed a standard approach for SVD grading. In this
approach, SVD is divided into four categories according to the degree of the
lesions: absent, mild, moderate, and severe. Generally, mild SVD is associated
with normal brain ageing while moderate or severe SVD suggests potential risks
for diseases such as stroke. One of the challenges for the grading of SVD is that
the difference between absent/mild and moderate/severe SVD are often very
subtle. In the context of similar challenging classification problems in medical
images, semi-supervised machine learning approaches have been very successful.
MIL is one example of such a semi-supervised learning method [21]. It solves the



problem that standard approaches are difficult to distinguish lesions and normal
tissues at a voxel or a patch.

In MIL, instances are contained in bags. A bag is positive if there is one
positive instance in it; otherwise the bag is negative. Different bags may con-
tain various numbers of instances. Compared to other standard supervised and
unsupervised learning algorithms, there are many MIL methods that have been
developed and applied, e.g. MIS-Boost [1], MIForest [11], and EM-Diverse Den-
sity [20]. In [1], the authors proposed a boosting based MIL, which outperforms
a number of other similar algorithms on several benchmark datasets. This ap-
proach aims to learn a specific instance for each weak classifier, which is able to
discriminate two categories of instances.

In this paper, we tackle the problem of automatic SVD identification. An
MIL framework is formulated to classify SVD into normal (absent and mild)
and abnormal (moderate and severe) groups, which is based on a large dataset
of CT images. In Section 2, details of the MIS-Boost algorithm and our further
optimization will be presented. Section 3 demonstrates how patches were ex-
tracted. We will show our imaging dataset, the pre-processing techniques, and
our model based on MIS-Boost in Section 4. Comparisons between our model
and other state-of-the-art algorithms will also be shown.

2 Methods

Given bags and their labels, MIL is recognized as a supervised learning method,
which learns the mapping X → Y, where X is a set of training data and Y =
{−1,+1} is the set of corresponding labels. In this case, X = {B1,B2, . . . ,BN}
and for each bag Bi = {I1, I2, . . . , Ini}, where Ik ∈ <r is the k-th instance in
bag Bi. N is the number of bags. ni is the number of instances in the i-th bag.
r is the size of a patch. The boosting-based MIL proposed in [1] aims to learn a
’bag-level’ classifier

F (B) = sign

(
M∑
m=1

fm(B)

)
, (1)

where fm(·),m = 1, 2, . . . ,M , are weak classifiers defined as

fm(B) =
2

1 + e−(β1D(pm,B)+β0)
− 1. (2)

The task of each weak classifier is to find a patch pm, which serves as an instance,
to discriminate different bags. In [1], the distance from an instance to a bag is
defined as below

D(pm,B) =

n∑
k=1

πkd(pm, Ik), (3)

where d(pm, Ik) = ‖pm − Ik‖2 and πk = e−αd(pm,Ik)∑n

l=1
e−αd(pm,Il)

. d(pm, Ik) is the

distance between the specific instance and the k-th instance in the bag, which is



the standard Euclidean distance and πk is its weight. α is a constant. D(pm,B)
is the weighted average distance of pm to each instance in the bag and fm(·)
maps the distance into the range [−1, 1].

In order to learn pm, [1] defined an error function based on Gentle Adaboost.
We obtained the parameters β0, β1, and pm by minimizing the weighted error
between the ground truth labels and the decision made by weak classifiers.

min
pm,β0,β1

εm =

N∑
i=1

wi(yi − fm(Bi))
2 (4)

In [1] the optimization problem is solved via a coordinate descent algorithm.
This uses a line-search method and therefore does not require the calculation
of derivatives. However, each iteration is very time-consuming. In this work,
we propose an optimization using a region-trust-reflective method [2] to allow
a more efficient optimization that exploits the fact that the function above is
differentiable. We formulated optimization of the objective function as a non-
linear least square fitting problem.

For initialization, we performed k-means clustering for all instances in all the
bags. The resulting K clustering centres were used as input for the initial pm
and we selected one leading to the minimum error εm among them. In order to
decide on the number of weak classifiers M , we split the training dataset into
sub-training and validation sets and pick up final M with minimum validation
error.

3 Patch Extraction

In MIL, each bag contains a number of instances, which are patches in our
case. Patches were extracted from original CT images since the slice thickness
varies between different scans and resampling them to a constant voxel size will
reduce the image quality. The extraction was guided by an atlas, which shows
the regions with high probability of lesions. In order to construct such an atlas,
we collected 277 MR images with SVD. For all MR images, clinical experts
manually outlined regions of interests (ROIs) corresponding to the SVD lesions.
They were then registered and normalized onto a standard space so that we are
able to obtain the lesion atlas. The atlas constructed shows the probability for
each voxel in the brain to be part of an SVD lesion. We excluded the regions
with very low abnormal probability (< 4%) in the atlas since they are likely
to be outliers. Finally, the lesion atlas was mapped back to each individual CT
image so that for each CT image a lesion atlas is available which shows regions
with high probability of lesions. Figure 2 visualizes this processing pipeline.

4 Experiments and Results

4.1 Imaging Data and Pre-processing

In this study, all the data was collected from a local hospital. We collected 627
baseline CT brain images with stroke. For all patients, the imaging was carried



Fig. 2: The process of atlas construction and mapping back. The red regions are
the ROIs for patch extraction.

out within a short time window after stroke (4.5 hours). The average age of these
subjects is 70.75 ± 10.83. There are 326 male and 301 female participants. The
labels of these images were assessed by an expert according to [8] and there are
inter-rater consistencies of about 75% between experts.

We developed a pipeline to normalize the images before analysis. All images
were registered to a CT-based template and then resampled to a uniform voxel
size. The template was developed by [14]. In order to reduce the radiation burden
for patients, in some subjects the brains were scanned in two separate volumes
including the cerebrum and the base using different voxel sizes. For the images
scanned separately, the voxel sizes of cerebrum and base are approximately 0.45×
0.45× 7.2 mm and 0.45× 0.45× 2.4 mm; the voxel size of the whole-brain scans
is approximately 0.38× 0.38× 3 mm, while the template’s voxel size is 2× 2× 2
mm. We combined these sub-volumes into single volumes with constant voxel
size. Subsequently we corrected the gantry tilt and rigidly co-registered all images
to the template. Following this step, a non-rigid registration [15] was performed
between all images and the template. Finally, all images were resampled onto the
voxel grid of the template. The processing pipeline failed for 37 CT scans because
of poor image quality and/or patient movement. These subjects were excluded
and we used the remaining 590 scans in the following experiments, which consists
of 350 with absent/mild SVD and 240 with moderate/severe SVD.

4.2 Patch-Based Identification of SVD

In order to have two SVD groups which are balanced in terms of number of
subjects, we randomly sampled 240 subjects from the absent or mild group and
performed leave-10%-out cross-validation. The random sampling was repeated
for T = 10 times and the final results are average values of the T repeats. In
this paper, abnormal bags and instances are regarded as positive.

In MIS-Boost, each subject is modelled as a bag, which can contain a number
of patches as the instances. The patches were extracted from an ROI according
to the atlas. The ROI is defined by those voxels in which the prior probability
for lesions is not low. As different original CT scans have different numbers of
slices and the size of the brain varies, different bags contain different numbers
of instances. We obtain on average 2313 patches (SD: 762) in a bag. Given the



different slice thickness of the different scans, 2D patches were extracted with a
patch size of 15× 15. The performance is shown in Table 1.

Table 1: Classification performance of different classifiers and features. Results
of MIS-Boost and random forest are based on T times cross-validation.

Classifier Feature Accuracy(%) Sensitivity(%) Specificity(%)

MIS-Boost Patch in ROI 75.04±1.37 80.17±1.65 69.92 ± 1.37

Random forest
Voxel in ROI 70.65 ± 0.03 69.63 ± 0.04 71.67±0.04
Voxel in whole brain 65.25 ± 0.02 65.64 ± 0.04 64.96 ± 0.04

Threshold t-Score 54.07 5.42 48.64

In order to demonstrate the performance of our model, we compared the re-
sults to those obtained using alternative approaches. We compared our approach
to random forests [10]. It is one of the most popular standard machine learning
methods and has achieved a notable success in classification of AD patients and
controls using imaging data [13]. As the CT images have been registered and
normalized to the template, the voxels of processed images were selected as fea-
tures for the random forests. Voxels were extracted from the whole brain and
the ROI, respectively. We also compared the approach by [9] which has shown
the ability for automated stroke lesion delineation using brain CT images. In
this approach a t-score map is calculated, which when combined with a carefully
selected threshold, can be used to delineate stroke lesions. Since acute stroke
lesions are similar to SVD in terms of intensity and texture, this approach can
be tested in terms of its performance for the evaluation of SVD. We collected
307 CT images without SVD to calculate the standard t-score map in template’s
space and mapped it back to each native image space. For each individual sub-
ject, we delineated the potential SVD lesions by applying the selected threshold
to its t-score map and therefore obtained the volume of the lesions. We then
sorted the volumes of all subjects and chose the median as the threshold to
distinguish normal and abnormal subjects in terms of SVD.

According to Table 1, our implementation of patch-based MIS-Boost outper-
forms the other two methods. It is clear that a simple method based on thresholds
is unreliable since its sensitivity is low. This means it cannot detect abnormal
subjects. Compared with the threshold-based method, the random-forest-based
method improves the accuracy by 10%. In addition, the random forest classi-
fier is sufficiently robust as the gap between sensitivity and specificity is small.
The use of voxels from the ROI defined by the atlas enhances the accuracy by
5% compared to using voxels from the whole brain. Furthermore, our proposed
model boosts the classification accuracy by an additional 5%. Apart from the
high accuracy of classification, the sensitivity of MIS-Boost is high.



5 Discussion and Conclusion

We have presented a framework in which boosting based MIL is used to learn
patches for discrimination of normal or abnormal brain degeneration. A key
feature of the proposed method is that it has been applied a large clinical CT
dataset for automatic clinical identification of SVD. In addition, patches from
original CT scans were employed, which avoids additional errors. To the best
of our knowledge of this is the first such application of automated detection of
SVD in such a large dataset. We have also shown that the classification results
obtained using a state-of-the-art classification technique such as random forests
is not as good as the proposed approach.

The proposed approach uses an atlas of SVD lesions derived from MR images.
Compared with the low resolution of CT images, MR images are able to show
brain lesions in detail. MR imaging is therefore regarded as the gold standard
in the assessment of SVD. This provides prior knowledge where lesions occur
frequently in the brain. The MR images used for the atlas construction are
separate from the images that are used for training and/or testing.

The proposed method also showed its strength compared to standard clinical
approaches, where basic statistical features are used. Since CT images show a
low signal-to-noise ratio, small lesions like SVD are difficult to be identified at
a voxel. In contrast, patch-based features decrease the effect of noise.

In the future, the proposed method will be applied to a larger dataset includ-
ing data from different clinical centres so that the framework can be tested more
widely in terms of robustness and accuracy. More importantly, our final goal is
to predict the outcome of stroke - whether the stroke patients will hemorrhage
or not. This will help to reduce the rate of SICH significantly, which will improve
quality of patients’ lives and reduce the pressure for the public health services.
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