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Abstract

Stroke is an acute cerebral vascular disease, which is likely to cause long-term disabilities and death. Acute ischemic lesions occur
in most stroke patients. These lesions are treatable under accurate diagnosis and treatments. Although diffusion-weighted MR
imaging (DWI) is sensitive to these lesions, localizing and quantifying them manually is costly and challenging for clinicians.
In this paper, we propose a novel framework to automatically segment stroke lesions in DWI. Our framework consists of two
convolutional neural networks (CNNs): one is an ensemble of two DeconvNets [35], which is the EDD Net; the second CNN is
the multi-scale convolutional label evaluation net (MUSCLE Net), which aims to evaluate the lesions detected by the EDD Net in
order to remove potential false positives. To the best of our knowledge, it is the first attempt to solve this problem and using both
CNNss achieves very good results. Furthermore we study the network architectures and key configurations in detail to ensure the
best performance. It is validated on a large dataset comprising clinical acquired DW images from 741 subjects. A mean accuracy
of Dice coefficient obtained is 0.67 in total. The mean Dice scores based on subjects with only small and large lesions are 0.61 and

0.83, respectively. The lesion detection rate achieved is 0.94.
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1. Introduction

Stroke is one of the major causes of long-term disability and
death globally [29]. Cerebral ischemia causes approximately
80% of strokes [12]. A number of factors such as energy deple-
tion and cell death are thought to lead to ischemic brain injuries
[8]. Brain imaging is one of the most important methods to as-
sess patients suffering from ischemic stroke [45] and computed
tomography (CT) and magnetic resonance imaging (MRI) are
usually acquired [25]. CT is more widely used because it is
faster and less expensive while MRI has much higher sensitiv-
ity for the acute ischemic lesions [24]. Particularly, diffusion-
weighted MR imaging (DWI) has advantages in diagnosis of
acute ischemic lesion in the early stage.

The detection and quantification of acute lesions in DWI
is important for the diagnosis and treatment of the ischemic
stroke. It may allow for accurate estimation of acute lesion vol-
umes. Lesion volume estimation may be important for hyper-
acute therapy decision-making, e.g. in determining the ratio of
reversible hypo-perfusion to irreversible infarct core [46]. Fur-
thermore, acute lesions can be profiled anatomically in terms of
volumes of anatomical-functional regions of interest, by super-
imposing standard atlas-derived or fMRI-derived regions [38].
However, manual segmentation of acute ischemic lesions is ex-
pensive in terms of time and human expertise. Several auto-
matic and semi-automatic methods have been proposed to assist
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clinicians to address this problem [9, 33, 4, 18, 27, 42, 31]. A
common limitation of these models is that they were developed
on small datasets which only contain tens of subjects. Since
the ischemic lesions can occur anywhere in the brain in vari-
ous shapes and sizes (see Fig. 1) [45], a small dataset makes
it difficult to cover the large variation in position, shape, and
size. Most of these algorithms are based on multi-modal MRI
including T1-weighted, T2-weighted, fluid attenuation inver-
sion recovery (FLAIR), DWI, and apparent diffusion coeffi-
cient (ADC) [32, 18]. Two of them only based on DWI are
semi-automatic: The first one is an adaptive thresholding al-
gorithm incorporating a spatial constraint [33]. The fully au-
tomatic adaptive thresholding segmentation is likely to fail in
cases where there are small lesions and/or lesions in low con-
tract to the normal tissue. Therefore, manual editing was intro-
duced to refine the automatic segmentations. The second one is
based on active contours algorithms [4], where before applying
the proposed algorithms, image slices with artefacts are manu-
ally removed. In addition, human experts mark bounding boxes
around the target lesions to initialize the algorithm. To the best
of our knowledge, Mah et al. [31] proposed the only fully au-
tomated method to segment ischemic damage based on a large
DWI dataset. However, their approach was dependent on a ref-
erence set of normal brain images and it was only applied to
lesions in the occipital lobe.

In clinical practice, semi-automatic methods are still too
costly and fully automatic algorithms are preferred. Although
multi-modal images provide rich information about lesions, pre-
processing such as resampling and co-registration are required
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Figure 1: Examples of acute ischemic lesions in DWI. The red circles indicate
the acute ischemic lesions and the yellow ones show the artefacts.

which can lead to inaccuracies. In this paper we propose a fully
automatic system (Fig. 2) to segment acute ischemic lesions
in a large DW image dataset based on deep convolutional neu-
ral networks (CNNs). Compared to traditional image analy-
sis algorithms, CNNs have major advantages, including end-
to-end training and feature learning [2]. Our system consists
of two networks, namely the EDD Net and the MUSCLE Net.
The EDD Net is an ensemble of two DeconvNets [35] and the
MUSCLE Net is the MUti-Scale Convolutional Label Evalua-
tion Net. The input to the proposed system are 2D slices con-
sisting of DWI. The EDD Net firstly outputs a primary seg-
mentation probability map. The binary segmentation obtained
by thresholding the probability map contains both lesions and
several false positives. The MUSCLE Net re-evaluates all the
detections by the EDD Net and excludes many false positives
using both the probability map and the original input image.
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]
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Figure 2: The overview of the proposed CNN based system to segment the acute
ischemic lesions in DWI. It comprises the EDD Net and the MUSCLE Net. The
EDD Net conducts the semantic segmentation on the input DWI. Based on the
output of the EDD Net, patches containing small lesions are extracted and they
are evaluated by the MUSCLE Net so that many false positives are removed.
The refined segmentation is therefore obtained.

The acute ischemic lesion segmentation problem is formu-
lated as a semantic segmentation task. However, the task of se-
mantic segmentation of acute ischemic lesions is different from
that of objects in natural images. In natural images, the tar-
get objects of interest are dominant in images (e.g. images in
the PASCAL VOC [11] dataset) while several acute ischemic
lesions can be so small (Fig. 1 (b)) that they are easy to be
overlooked by observers. In addition, it is also difficult to dis-
tinguish the boundaries between ischemic lesions and normal
tissue (Fig. 1 (c) and (d)) while objects in natural images are
often characterized by sharp edges to the background. Further-
more, there are many artefacts which have similar appearance
to the lesions in DWI (Fig. 1 (b) and (c¢)). Air is one of the main
resources of these artefacts. They are the major sources of false
positives for automated lesion segmentation techniques.

In this paper, we propose a novel system to address the is-
chemic lesion segmentation problem. A key contribution is its
ability to handle the lesions of various sizes and shapes while
minimizing the number of false positives. Our system achieves
the state-of-the-art of the ischemic lesion segmentation perfor-
mance in DWI while being validated on a large clinical dataset
from over 700 patients.

2. Related Work

In this section, we review two categories of related work:
First, methods that address the brain tumor segmentation (BRATS)
[34] and ischemic stroke lesion segmentation (ISLES) [32] chal-
lenges are reviewed. Secondly, we review several CNN-based
segmentation approaches that have been recently introduced into
medical imaging.

2.1. Brain Tumor and Lesion Segmentation

In the BRATS challenges held in 2016, the dataset contains
a number of subjects with gliomas and the task is to develop
automatic algorithms to segment the whole tumor, the tumor
core and the Gd-enhanced tumor core based on multi-modal
MR images. In the latest competition [34], over half of the
methods were based on deep neural networks and they achieved
top results. For instance, the hyperlocal features (original input
image) are used prior to the final segmentation to improve the
accuracy [3]. As a pixel-level segmentation problem, there are
much more non-tumor pixels than the ones belong to part of the
tumors, which means there is a significant label imbalance. To
alleviate the imbalance, Lun et al. [30] proposed a re-weighted
loss function. Randhawa et al. [37] also modified the cross-
entropy loss function so that the segmentations at tumor edges
could be improved. Instead of analysing multi-modal MRIs in
2D, the DeepMedic approach [21] performs segmentation of tu-
mors in 3D while using extended residual connections. In addi-
tion to deep learning algorithms, machine learning approaches
based on the random forests [10, 26, 14, 43] also demonstrate
good performance using hand-crafted features.

The segmentation of sub-acute ischemic stroke lesion is one
of the tasks in ISLES 2015 [32], which attracted many en-
tries. The challenge is to automatically segment sub-acute is-



chemic stroke lesions based on multi-modal MR images. Com-
pared with the dataset in the BRATS, the dataset used in the
ISLES is smaller. Similar to brain tumors, sub-acute ischemic
stroke lesions are difficult to segment. In terms of methods pro-
posed, these range from machine learning based methods to de-
formation based methods. Among the top ranked approaches,
DeepMedic [20, 22] was the best, which is a multi-scale 3D
CNN with fully connected CRFs achieving a Dice score of 0.59
in testing. The second best performing method used a modified
level-set approach embedded with the fuzzy C-means algorithm
[13] while the third best method is based on random forests and
contextual clustering [16], which is a typical way of segment-
ing lesions like those in BRATS. They achieved Dice scores of
0.55 and 0.47, respectively. The Dice scores reported by most
other attendees ranged from 0.3 to 0.5.

Most of the successful CNN based methods in both BRATS
and ISLES derive a problem specific CNN architecture from
generic ones. This is because in medical imaging there is a lim-
ited number of images with labels available for training. To ex-
plore the distinctive lesion features, specific domain knowledge
is still helpful.

2.2. Other CNN-based Approaches to Segmentation

In molecular imaging, a cascaded CNN called deep contour-
aware network (DCAN) [5] has been shown to be successful in
the gland segmentation task. Prior to the final segmentation,
a primary gland object segmentation and a gland contour seg-
mentation are produced separately. The final segmentation is
then obtained by fusing the object and contour segmentations.
The segmentations are based on multi-level contextual features
extracted from the fully convolutional layers. In cell segmenta-
tion and tracking scenario, the U-Net approach [39, 7] performs
well. In its architecture, the context and location information
of cells are incorporated. Similar to the DeconvNet approach
[35], the U-Net [39] has a series of convolution and deconvolu-
tion layers to construct the output based on coarse feature maps.
In abdominal imaging, multi-level deep convolutional networks
have been proposed to segment the pancreas in CT images [40].
This uses a hierarchical coarse-to-fine method studying images
from patch level to superpixel/region level. In cardiac imag-
ing, a left ventricle segmentation approach for MR images has
been proposed that combines deep CNNs and deformable mod-
els [1].

Similar to the deep networks proposed for brain lesion seg-
mentation, generic CNN architectures are often customized for
many other medical imaging tasks. However, the U-Net [39]
is a generic architecture which can be easily adapted to other
cases in medical imaging. More specifically, it is not a task
specific method that requires specific prior knowledge (e.g. the
input data has to be homogeneous in 3D). Furthermore, since it
is a fully convolutional network, the input is flexible in terms of
sizes and dimensionality.

In addition to the U-Net [39, 7], the fully convolutional net-
work [28] and the DeepLab [6] are another two generic CNNs
for segmentations. The FCN [28] is the first CNN which allows
end-to-end training for the semantic segmentation problem. It
inherits the convolution and pooling layers from contemporary

CNN:s, including the AlexNet [23], the VGG-Net [41], and
GoogLeNet [44], in image classification problems. It adapts
them into fully convolutional styles for the semantic segmenta-
tion task. The FCN [28] learns features in multiple scales. The
DeepLab [6] is a type of improvement to the FCN [28]. In order
to gain deep features, the FCN [28] performs many convolu-
tions and poolings which decrease the image resolutions while
the DeepLab [6] contributes the atrous convolution and atrous
sparial pyramid pooling (ASPP) layers which keep the depth
of features without decreasing the image resolutions. In ordi-
nary convolutions, features are extracted sparsely while dense
features are extracted using the atrous convolutions.

3. Our Approach

The proposed lesion segmentation framework consists of
two modules: The first one is an ensemble of /N adapted De-
convNets [35] (EDD Net) (Fig. 3) and the second one is a MUti-
Scale Convolutional Label Evaluation Net (MUSCLE Net) (Fig.
5). While the EDD Net attempts to achieve optimal lesion seg-
mentation at lesions in all scales, the MUSCLE Net focuses on
lesions that have been detected at small scales and aims to re-
move false positives.

3.1. EDD Net

Fig. 3 shows the architecture of the proposed EDD Net.
The input is an image patch, which is fed into N parallel De-
convNets [35] to infer the semantic segmentations respectively.
The results from both are then combined. The combination is
concatenated with the input image patch. Several convolution
layers are added in the end to produce the final output.

The basis CNN architecture, i.e. the DeconvNet [35] is
selected among several generic CNN architectures for seman-
tic segmentation, including the U-Net [39], DeepLab [6] and
the FCNs [28]. The basis network has a stack of convolution
and pooling layers in the convolution stage and a stack of cor-
responding deconvolution and unpooling layers in the decon-
volution stage. Within each stack, there are several convolu-
tion/deconvolution layers. Between two stacks, there is a pool-
ing/unpooling layer. The number of stacks and the number of
layers in each stack define the size of the network. The pro-
posed basis network has three stacks of convolution layers and
two pooling layers in the convolution stage, which leads to the
best results.

In segmentation contextual information often contributes im-
portant knowledge to solve the label assignment. However,
the appropriate level of contextual information is often diffi-
cult to identify. Excessive amounts of context can hinder the
segmentation of lesions and insufficient context makes it diffi-
cult to distinguish between lesions and artefacts. If the network
grows deep, i.e. has many convolution and pooling layers, it
processes a large amount of contextual information. However,
with the increasing number of convolution and pooling layers,
the input is down-sampled further and further and therefore the
resulting feature maps have lower and lower resolutions. In
this case, small lesions are gradually eliminated by subsequent
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Figure 3: The architecture of the proposed EDD Net. The rectangles in different sizes indicate data blobs in different sizes. The height shows the size of each piece
of data, e.g. 64 x 64. The width shows the number of data pieces in each blob, e.g. 1, 32. Arrows in difference colors stand for different operations.

down-sampling steps and it can be difficult to reconstruct these.
In contrast, if the network is shallow, i.e. using only few convo-
lution and pooling layers, only limited context is used. In this
case, lesions and artefacts may have similar feature representa-
tions making it difficult for the classifier to distinguish between
them.

In our approach, we propose to use image patches instead
of image slices as the input. This has three major advantages:
Firstly, it modifies the data distribution. For a given image
slice, there is a significant imbalance between pixels that repre-
sent normal tissues compared to those of lesions since acute
ischemic lesions occur locally [8]. The signals representing
lesions are as weak as those representing noise and artefacts
among the whole data distribution. However, the lesion sig-
nals can be apparent among the data distribution based on im-
age patches. Secondly, a large number of patches can be ex-
tracted from image slices, which is a fundamental requirement
for CNN training. In contrast, if the training data is based on
image slices, there is only limited number of candidates avail-
able. Finally, as image patches are smaller than image slices,
the batch size in training can be larger, which makes the train-
ing more efficient.

We propose to adopt the DeconvNet [35] as the basis net-
work of the EDD Net. In addition to convolution and pool-
ing layers, the DeconvNet [35] has corresponding deconvolu-
tion and unpooling layers to create the segmentation probability
map from the coarse feature maps. For the input image patch
X, assume X is the feature maps obtained from the convolution
and pooling operations. f(-) and g(-) are the convolution and
deconvolution functions which jointly produce the segmenta-

tion map y, i.e.
x = f(x),y = g(%).

In different architectures, the f(-) functions are similar, which
is the composition of several convolutions and poolings, while
different strategies are usually used in g(+).

In the DeepLab approach [6], the g(-) function is a bilin-
ear interpolation function upsampling the coarse feature map
into the segmentation map directly. In the FCN approach [28],
the g(-) not only bilinearly upsamples the feature map but also
fuses it with the feature maps obtained at higher resolutions as
these contain more image details. Therefore, more small le-
sions are detected. However, they are difficult to distinguish
from artefacts.

In the U-Net [39], the g(-) is modelled in a more sophis-
ticated and powerful fashion. Here, the final segmentation is
constructed step by step. In each step, the feature map is upsam-
pled to a higher resolution first, which corresponds to a pooling
layer before. The upsampled feature maps are then concate-
nated with the feature maps before the corresponding pooling
layer. Afterwards, a few layers of convolutions are performed
on the concatenation. As a result, the segmentation obtained
from the U-Net [39] has less false positives than that from the
FCN [28] since these convolutions detect and eliminate several
false positives.

In the DeconvNet approach [35], there are additional pool-
ing masks m (Fig. 4) output from pooling layers who record the
locations of the maximal activations. Thus, the specific func-
tions in the DeconvNet [35] can be written as:

iam = fD(X)ay = gD(iv m)



The gp(+) function represents the deconvolution and unpooling
operations. The pooling masks m are used for upsampling so
that the semantic output can be better constructed. Similar to
the U-Net [39], the DeconvNet [35] employs a number of de-
convolution layers to construct the output step by step, which
results in accurate segmentations. In contrast, the U-Net [39]
uses feature maps before pooling layers to assist recovering im-
age details, however, this can introduce artefacts and noise. In-
stead, the pooling masks used in the DeconvNet approach [35]
exclude the artefacts and noise.

Before Pooling o]1 After Unpooling
1|0 1] 2 1|01
3 3 Pooling Mask 2| 3
0 o1 . . n
Pooling Result Candidate to Unpog
3 E n/Znn

Figure 4: The max pooling and unpooling strategy demonstrated in the De-
convNet approach [35]. In the pooling stage, the position of the maximum
activation is recorded within each filter window by a mask. In the unpooling
stage, the entries are placed in the unpooled map according to the mask.

We propose to combine N DeconvNets [35] to produce an
ensemble of classifiers in order to further enhance the results.
Let A(-) be the ensemble function fusing the N networks to-
gether, i.e.

h(x) = gp(fb (%) ® g1 (FH(x) @ -~ ® g5 (5 (x)). (D)

Since the N DeconvNets [35] are initialized differently, they
converge at different optima but all of them are able to produce
accurate lesion segmentations. An ensemble of both CNNs
therefore benefits for performance improvement because of their
accuracy and diversity [47].

Furthermore, inspired by the U-Net [39] we propose addi-
tional convolution layers at the end of the naive ensemble to
refine the segmentation. There are many convolutions and de-
convolutions between the original input image and the seman-
tic segmentation. The network may eliminate some details in
the input image during the feed-forward pass. We propose to
concatenate the input image and the segmentation probability
map as well as to add a few convolution layers so that the seg-
mentation can be refined according to the original image. The
refinement yields marginal increase of performance. Therefore,
the function that the proposed EDD Net performs is

H(x) =r(h(x),x) 2)

Here r(-,-) performs the concatenation and convolutions after
the naive ensemble. The loss function of the EDD Net is there-
fore

€=Ml (H(x),y) + Aala(h(x),y) + Asls (9 (fH (X)), ¥)

+ Mala(gh (fH(X)),¥) + -+ Avsalnia (gD (D (%)), ).
3)

In the loss function, ¢;(i = 1,2, ..., N +2) is the cross-entropy
loss function and the J; is the corresponding weight. The loss
function is optimised via back-propagation as usual.

The EDD Net is a fully convolutional network since both
of its subnets are fully convolutional. Therefore, the size of
the input image patch is flexible. In practice, we use the image
patches to train the network and we test it on the whole image
slice.

3.2. MUSCLE Net

The EDD Net identifies many acute ischemic lesions cor-
rectly. However, it also produces many false positive clusters
(i.e., aggregation of voxels) which have similar appearance with
the small lesions. To remove them, we propose a second net-
work, called MUSCLE Net, which evaluates the labels of small
lesions detected by the EDD Net in order to differentiate be-
tween false and true positives.

The architecture of the MUSCLE Net is shown in Fig. 5.
The input is a stack of image patches at three scales extracted
from the original DWI as well as the probabilistic output from
the EDD Net. The MUSCLE Net aims at evaluating if the can-
didate is a real lesion or not. Considering the input patches are
fairly small, the MUSCLE Net has limited convolutional layers.

The architecture of the MUSCLE Net is based on a mini
VGG-Net [41]. It focuses on small lesions locally so that the
input image patches are relatively small. The MUSCLE Net
consists of four convolution layers, one pooling layer, and three
fully connected layers. The convolution and pooling layers ex-
tract the distinctive features from the input and the fully con-
nected layers act as a classifier.
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Figure 5: The architecture of the MUSCLE Net. The rectangles stand for the
data blobs. Their heights represent the sizes of data pieces, e.g. 16 x 16. Their
widths show the number of data pieces in the blobs, e.g. 4, 32. In the fully
connected layers, the lengths of strings demonstrate the number of elements in
the layers. Arrows in different colors show different operations.

The input patch set is derived as follows: First, the primary
binary lesion segmentation map is obtained by thresholding the
probabilistic segmentation map which is the output of the EDD
Net. Based on the binary segmentation map, small candidate le-
sions are detected using connected-component analysis. Origi-
nal image patches at multiple scales are extracted around them,



as well as the corresponding probabilistic segmentation as com-
puted by the EDD Net. This procedure is described in Fig.
6. The real lesions (true positives) are labelled as positive in-
stances while the false positives are labelled as negative ones.

Probabilistic
Segmentation

Original DWI Image

[

Binary Segmentation

5 E

Input to the MUSCLE Net

Figure 6: The derivation of the input to the MUSCLE Net. The probabilistic
segmentation is obtained from the EDD Net. The binary segmentation is ob-
tained by thresholding the probabilistic segmentation. Candidate small blobs
are detected in the binary segmentation. The corresponding patches are ex-
tracted in the original DWI in multiple scales and the probabilistic segmenta-
tion map. They are then resized and concatenated resulting in the input to the
MUSCLE Net.

The MUSCLE Net outputs results in instance level rather
than pixel level, which are the probabilities of the candidates
being lesions. They are then fused with the pixel level proba-
bilities given by the EDD Net using Bayes’ theorem. The final
semantic segmentation result is therefore achieved. The loss
function used here is the cross-entropy function and it is opti-
mised using the back-propagation algorithm.

3.3. Evaluation Methods

We propose a number of criteria to evaluate our method.
First, the Dice coefficient is used to compare the agreement
with manual segmentation. It measures the overlap between
the candidate segmentation X and the reference segmentation
Y and is defined as

_ 21X NY|

Dice(X,Y) X[

| - | denotes the number of pixels in the set. However, the Dice
similarity measurement based on overlaps is not robust in all
cases: For example, an error of one pixel may not affect the
Dice coefficient significantly if the ground truth contains hun-
dreds of pixels; however it makes a significant difference where
the ground truth is small and only contains a few pixels. There-
fore, the average number (m#) and the average pixel-size (mS)
of the false positives (FP) and false negatives (FN) are intro-
duced as additional metrics. Our goal is to decrease the number

and size of the FP and the FN. In addtion, we define the detec-

tion rate (DR) as

Nrp
DR = 2LP
R N

where the N denotes the number of all subjects and the Npp
denotes the number of subjects with any true positive (TP) le-
sion detections. Since the FP may mislead clinicians, the DR is
expected to be as high as possible.

3.4. Implementation Details

The CNNs in this paper are implemented using the Caffe
framework [19]. The optimization during training is achieved
using the standard stochastic gradient descent algorithm. The
learning rate is fixed as 0.05. The momentum and the weight
decay is set to 0.9 and 0, respectively. The weights in networks
are initialized using the xavier algorithm [15]. The filter size
of the convolution and deconvolution layers are 3 x 3 and the
stride is 1. The batch normalization technique [17] is used. We
have limited computation resources and therefore set N = 2.
Inthe Eq. 3, weset \; =1,i=1,2,..., N + 2.

4. Data

4.1. Dataset and Preprocessing

In this study, DWI scans from 741 acute stroke patients
were collected from local hospitals. All clinical images were
collected from a retrospective database and anonymized prior
to use by researchers. Ethical approval was granted by Imperial
College Joint Regulatory Office. The scans were obtained from
three different scanners (Siemens) with the following acquisi-
tion parameters: field strength: 1.5-3T; slice thickness: 5mm;
slice spacing: 1.0-1.5mm; pixel size in x-y plane: 1.40 x 1.40
or 1.80 x 1.80mm; matrix size: (19 — 23) x (128 x 128) or
(192 x 192); field of view: 230 x 230 or 267 x 267; echo time
90-93ms; repetition time 3200-4600ms; flip angle 90°; phase
encoding steps: 95-145. Patients information can be found in
Table 1. In all images the acute ischemic lesions were annotated
by experienced experts. We use 380 of them to train and vali-
date our CNNs and the remaining 361 ones are used for testing
only. Among the developing images, 274 of them are used for
training and 106 ones consist of the validation set.

Since the images were acquired from different scanners un-
der different protocols, several pre-processing steps are per-

formed before experiments. Considering the images are anisotropic

in the axial direction (or z-axis) and the resampling is likely to
introduce interpolation errors, we will perform analysis of 2D
slices instead of 3D volumes. To make sure each pixel in 2D
slices has uniform physical pixel size (in mm?), homogeneous
linear resampling is performed in 2D. All images are resampled
to uniform pixel size in 2D of 1.6mm x 1.6mm. Subsequently,
the intensity distribution of each image is normalized into that
of zero mean and unit variance.



Age (years)

mean: 68.01, std: 14.8, range: 26-93

Gender (male %) 56.28

Interval from acute clinical presen- | median: 2, std: 1.78, range: 0-9
tation to MRI (days)

Admission  functional severity | median: 5, range: 1-30
(NIHSS)

Table 1: Patients information in statistics.

4.2. Data Augmentation

Each DWI scan has a limited number of lesions, if the train-
ing data is generated in the image slice level or lesion instance
level, there is only a small number of images (patches) avail-
able. As CNNs have a large number of parameters and it is
necessary to generate a large number of images (patches) to
train the CNN. For this data augmentation is implemented in
several ways to produce more training data based on the limited
number of DWI: First, extracted images (patches) are horizon-
tally flipped and randomly rotated. Second, the patch extraction
strategy also represents a way of data augmentation. It is used
to reduce the redundant contextual information and balance the
number of normal and lesion pixels but it is an effective way
of data augmentation. We sample all pixels labelled as part of
lesions. For each of these pixels, we extract a patch around it.
That pixel is placed in a random position in the patch. As a
result, each patch contains pixels belonging to both lesions and
tissues/background in general. If the pixel locates in the cen-
ter of a very large lesion, the patch extracted based on it may
contain pixels only belonging to lesions. A pixel cluster of le-
sions ususally have a number of pixels (e.g. 20). That number
of patches (i.e. 20) can be generated.

5. Experiments and Results

5.1. Baseline Architectures

Although the DeconvNet [35] was selected as the basis CNN
in the proposed EDD Net, other generic CNN architectures, in-
cluding the U-Net [39], the DeepLab [6] and the FCN [28], aim-
ing at image segmentation were used as baseline comparison.
In this set of experiments, comparisons were among single net-
works rather than ensembles. The training inputs to all CNNs
were patches from the DWI of 64 x 64 pixel size. This was the
best patch size for this task (see Sec. 5.2). Since each architec-
ture had its own characteristics, it was difficult to adapt them so
that they had exactly the same size of the receptive field. For-
tunately, our results in Sec. 5.2 showed the performance was
robust to the size of the receptive field when the image patch
size was 64 x 64. When adapting the candidate CNN architec-
tures into our dataset, we preserved their key features. More
specifically, the adapted DeepLab [6] contained atrous convo-
lution and atrous spatial pyramid pooling (ASPP) layers. The
adapted FCN [28] was still in the fully convolutional config-
urations and used a multi-scale approach. The adapted U-Net
[39] had concatenations between related layers. The adapted

DeconvNet [35] retained the featured unpooling layer. No post-
processing operations such as the CRFs were used in any archi-
tecture.

Architecture DeepLab FCN U-Net  DeconvNet
without [28] [39] [35]
CREF [6]
Side length of | 44 52 46 44
receptive field
train | 0.60 0.66 0.71 0.71
Dice val 0.55 0.60 0.64 0.62
test | 0.48 0.50 0.52 0.55
train | 10.35 11.73 7.86 8.32
m#FP  val 11.51 13.30 895 10.08
test | 12.81 16.44 12.85 11.78
train | 4.80 2.96 2.35 2.19
m#FN  val 4.91 4.00 3.92 4.03
test | 5.22 3.88 3.99 3.99
train | 7.23 8.40 9.56 8.60
mSFP  val 7.29 8.66 9.10 8.69
test | 8.25 9.92 11.50 10.14
train | 3.34 2.03 2.17 1.80
mSFN  val 6.53 5.84 6.20 511
test | 4.08 3.66 4.17 3.58
train | 0.97 0.99 0.99 0.99
DR val 0.98 0.99 0.99 0.97
test | 0.93 0.94 0.94 0.94

Table 2: Performance of the baseline CNN architectures. In each measurement,
results on the training, validation, and testing datasets are reported respectively.
The DeconvNet [35] is superior to the others in most measurements.

The results were displayed in Table 2. All CNNs shared
very high detection rates. The DeconvNet [35] clearly outper-
formed the other approaches. Since the gap between the U-Net
[39] and the DeconvNet [35] was not very significant, we per-
formed paired t-test between them in the testing dataset. The
p-value is 1.12 x 10~%, which indicated that the DeconvNet
[35] was superior to the U-Net [39] in this case. As they share
similar f(-) functions, the key lies in the g(-) functions. In
the f(-) functions, many convolution and pooling operations
are performed, which diminishes the activations of lesions in
small scales. Basically, all architectures except the DeconvNet
[35] employ the bilinear interpolation strategy to upsample the
coarse feature maps. This bilinear interpolation makes it dif-
ficult to reconstruct the small lesions based on the weak ac-



tivations. The DeepLab approach [6] produces the output by
conducting the bilinear interpolation on the feature maps in the
lowest resolution, which introduces many false negatives. The
FCN approach [28] combines feature maps at multiple resolu-
tions to construct the segmentation map. The feature maps in
high resolutions contain signals from small lesions but artefacts
and noise as well, which results in a large number of false pos-
itives in average. The U-Net [39] is equipped with more pow-
erful operations in its g(-) function so that it performs better
than the former two networks. The success of the DeconvNet
[35] in this case is due to the recorded pooling masks and the
unpooling strategy. They work jointly and are able to preserve
the signals from small lesions. Despite that the activations of
small lesions are weakened, if they are recorded by the pooling
masks, they are likely to be reconstructed in the deconvolution
stage. In summary, the pooling mask recording and unpooling
strategy works better than bilinear interpolation when there are
small lesions.

5.2. Patch Size and Receptive Field

The DeconvNet [35] has been validated that it is the best
baseline architecture among all candidate CNN architectures.
In addition to the CNN architecture, the configuration of the
network influences the performance significantly. It is mainly
in two aspects which are the size of the input image patches and
that of the network’s receptive field. As mentioned before, the
size of image patches in the training stage determines the data
distribution. The size of the network’s receptive field deter-
mines the amount of contextual information being considered.
They work jointly and experiments in this section aim at dis-
covering how do they affect the CNN’s performance.

Single DeconvNets were used in the following experiments.
In terms of the input patches, four different sizes were tested.
The maximum was the whole image slice. The different sizes of
the receptive fields were realized by employing different num-
bers of convolution and pooling layers. For instance, each De-
convNet branch in the EDD Net (Fig. 3) had the receptive field
in 64 x 64 pixels.

Table 3 displayed the results of the DeconvNets [35] for
different configurations. It was obvious that when the input
patches in the training stage were small in size (32 x 32) or large
(i.e. the full image size 128 x 128), the CNN could not perform
well in the semantic segmentation task since they contained ei-
ther insufficient or excessive contextual information. Although
small patches could help discriminate the lesions from the nor-
mal tissue, which reduced the false negatives to the minimum,
it was difficult for the network to distinguish between artefacts
and the real lesions. As a result, there was a large number of
false positives introduced. In the other extreme case where the
input was the full image slice, small objects including artefacts
and lesions were easily eliminated by the numerous convolu-
tions and poolings. Therefore, few false positives were intro-
duced but there were more false negatives. In the mean time,
many true positives were ignored by the CNN so that the detec-
tion rate fell down. Not surprisingly patches of medium sizes
(64 x 64 and 96 x 96) were able to achieve the trade-off between

the numbers of false positives and false negatives and thus the
Dice coefficients on the whole increased to reach an optimum.

It was interesting that the DeconvNets [35] were generally
robust to the size of the receptive fields in terms of the Dice co-
efficient when the size of the training input patches was fixed.
Particularly when the patch size was extremely small or large,
the overall results were stable in terms of Dice coefficient. In
these cases, the size difference of the receptive fields was re-
flected in the number of false positives and false negatives. If
the patches were in medium sizes, the Dice coefficient showed
little fluctuations. For instance, when the training patches were
in 64 x 64 pixels, the networks performed similarly whose re-
ceptive fields were in 32 x 32 and 44 x 44 pixels. However, the
performance slightly improved when the size of the receptive
field increased to 64 x 64 pixels. When the training patches
were in 96 x 96 pixels, the DeconvNet [35] with the receptive
field in 44 x 44 pixels had a slightly better performance com-
pared to those with larger receptive fields.

According to the results, the configuration providing the
best performance was chosen as the basis network of the EDD
Net. More precisely, the training patches were in 64 x 64 pixel-
size and the same as the receptive field. In summary, the train-
ing patch size affects the networks’ performance more than the
receptive field. Patches of medium sizes are preferable. Once
the size of training patches is fixed, the network is fairly robust
to the size of the receptive field.

5.3. Ensemble and Refinement

To further improve the performance, the EDD Net was de-
veloped based on the DeconvNets [35] under the best configu-
ration. Table 4 displayed the results in details. First, the two
DeconvNets [35] both provided accurate segmentations as be-
fore. Note that the Dice coefficient of them in this experiment
were 0.56 which is slightly lower than it in Table 3. It is the
fact that training two networks simultaneously is more difficult
than a single one as the number of parameters doubles. There-
fore, the loss function is more difficult to optimise. Second, it
was obvious that the naive ensemble of the two networks led to
a significant improvement. This is due to a sharp reduction of
the false positives, which results from the diversity of the two
DeconvNets [35]. As both of them have detected most of the
lesions, the diversity indicates false positives given by them are
different. Fusing them together should be able to decrease a
substantial number of false positives.

Finally, a few convolution layers were added to refine the
segmentation provided by the naive ensemble. The naive en-
semble of the two DeconvNets [35] was so deep that the input
patches were likely to lose details when being fed forward. In-
spired by the U-Net approach [39], concatenating the original
input and the result given by the naive ensemble and adding
a few convolution layers yielded a refined segmentation. In
summary, the ensemble based on the accuracy and diversity of
sub-nets makes a significant improvement to the network per-
formance entirely.



Size of input patch 32 x 32 64 x 64 96 x 96 128 x 128
Side length of 18 32 32 44 64 44 64 96 64 96 128
receptive field
train 048 049 | 071 071 074 | 072 0.69 068 | 0.62 0.63 0.61
Dice val 044 044 | 0.64 0.62 0.64 | 063 059 058 | 050 053 051
test 036 036 |055 055 058 |054 052 051 |047 048 047
train 4432 38.16 | 9.09 832 541 |853 9.69 1293 | 1.68 1.82 0.96
m#FP  val 43.14 3896 | 11.04 10.08 7.88 | 11.26 1290 16.08 | 2.75 2.64 1.63
test 51.23 41.07 | 1282 11.78 792 | 13.74 13.18 1739 | 345 341 1.75
train 274 263 262 219 212 |235 193 197 |540 533 559
m#FN  val 317 341 | 397 403 439 | 409 450 441 |637 6.19 6.52
test 282 331 |382 399 425 |395 426 414 |653 641 6283
train 934 1042 | 697 860 930 |705 873 737 |325 510 297
mSFP  val 973 1020 | 6.51 869 852 | 729 837 720 | 4.07 566 3.10
test 1041 1130 | 8.05 10.14 10.63 | 779 9.81 801 | 481 634 440
train 2,17 249 | 221 1.80 199 | 199 164 157 |3.19 301 3.33
mSFN  val 412 353 | 667 511 748 |6.00 546 644 | 818 794 8.38
test 3.02 347 | 405 358 370 |377 394 353 |554 523 6.22
train 099 098 099 099 098 [099 099 099 | 098 098 097
DR val 099 099 099 097 099 [099 099 098 |09 095 0.95
test 095 094 | 094 094 094 | 094 093 094 |09 091 091

Table 3: Results of the DeconvNet [35] in different configurations. In each measurement, results on the training, validation, and testing datasets are reported
respectively. It is clear that the size of training patch size influences on the performance more than the size of network’s receptive field.

5.4. The MUSCLE Net

The EDD Net has advantages to segment the acute ischemic
lesions in DWI. However, false positives are difficult to avoid.
We validated the trained EDD Net on the validation dataset and
reported the false positives in Fig. 7. Approximately 99% false
positives were of size 60 pixels or less. According to the Table
4, the false positives on the validation dataset were in 8.87 pix-
els in size on average. Therefore, the MUSCLE Net is only
needed to assess candidates within 60 pixels or less in size,
which is defined as small objects.
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Figure 7: The statistics of the false positives on the validation dataset provided
by the EDD Net.

Table 4 also showed the results of the EDD + MUSCLE
Nets. The MUSCLE Net eliminated a large number of false
positives without erasing many true positives, which benefited
further improvement in performance. According to our obser-
vations, the false positives normally appeared isolated without
overlap with other lesions. Examples were shown in Fig. 6
and Fig. 8. This should be one of the major reasons leading
to the success of the label evaluation. Although false positives
were removed, their mean size grew, which indicated that most
false positives within a few pixel-size were eliminated while
some slightly larger ones were remaining. The limitation of
the MUSCLE Net is that it is not possible to be integrated with
the EDD Net to enable the end-to-end training since the train-
ing data generation operation is not differentiable. In summary,
the MUSCLE Net is powerful to remove false positives without
introducing many false negatives.

5.5. Small and Large Lesions

Apart from the analysis based on the whole testing dataset,
it was also interesting to study the performance of our proposed
CNNs on datasets with only small or large lesions. First, we
computed the mean size of lesions of each subject in our testing
dataset and took an average across all subjects. As a result, the
mean average size of lesions of the testing subjects was 36.21
pixel-size. Therefore, we regarded subjects with average le-
sions smaller than 37 pixel-size as the ones with small lesions;
otherwise with large lesions. Second, the testing dataset was
separated into two subsets: one contained subjects with small
lesions and the other one consisted of subjects with large le-
sions. The former subset had 271 subjects and the latter one



DeconvNet 1 DeconvNet 2 Naive ensemble EDD Net EDD+MUSCLE Net
train | 0.74 0.72 0.79 0.80 0.88
Dice val 0.64 0.61 0.68 0.69 0.73
test | 0.56 0.56 0.62 0.63 0.67
train | 6.82 9.49 4.20 3.78 0.64
m#FP  val 9.23 12.27 6.33 5.67 3.14
test 10.18 13.38 6.68 5.89 3.27
train | 1.80 1.59 1.51 1.45 1.45
m#FN  val 4.08 3.80 4.02 4.01 4.16
test | 4.02 3.66 3.81 3.82 4.07
train | 8.39 6.89 9.55 9.49 8.81
mSFP  val 8.09 7.33 9.01 8.87 8.95
test | 9.55 7.37 10.31 10.53 12.16
train | 1.86 1.40 1.41 1.42 1.42
mSFN  val 5.58 5.71 5.65 5.62 6.32
test | 3.81 3.19 3.49 3.64 4.16
train | 0.99 0.99 0.99 0.99 0.99
DR val 0.99 0.99 0.99 0.99 0.99
test | 0.94 0.94 0.94 0.94 0.94

Table 4: Results of the EDD and the MUSCLE Nets. In each measurement, results on the training, validation, and testing datasets are reported respectively.
The ensemble contributes a significant improvement to the whole performance. The MUSCLE Net shows its advantage in removing false positives to boost the

performance tremendously again.

had 90 subjects. Third, we evaluated our baseline CNN archi-
tectures and proposed EDD and MUSCLE Nets based on the
two subsets.

Results were displayed in Table 5. Not surprisingly, the
performance of all CNNs dropped down when there were only
small lesions. When there were only large lesions, the detection
rates were 100%. However, the EDD Net performed signifi-
cantly better than any of the baseline CNNs. Its mean Dice
score was 9% higher than the best baseline CNN. This im-
provement came from the significant reduction of the number
of false positives as its m#FN, mSFP, and mSFN were simi-
lar to the baselines’. In addtion, the MUSCLE Net further re-
moved nearly half of the false positive artefacts. Importantly,
the m#FN of the MUSCLE Net only increased a bit compared
to the EDD Net, which indicated that it maintained most of the
true positive lesions. In terms of the subjects with large lesions,
the Dice score achieved by the EDD Net reached 83%. In this
condition, although the MUSCLE Net was still able to remove
some small false positives, it could not reflected on the Dice
score. The detection rates indicated that when there were large
lesions, they can never be ignored by our CNNs. The proposed
CNNs might only ignore a few small lesions.

5.6. Running Time

The preprocessing computation was run on a desktop PC,
which is an HP Elite 8300, with an i7 processor and 16GB
RAM. The CNNs were trained and tested on an NVIDIA Tesla
K80 GPU processor. We tested the running time of each stage
of our proposed pipeline and the results were shown in Table
6. In summary, to test a new DWI scan, it costs less than one
second, which is very fast.

10

6. Discussion and Conclusion

In this paper, we have presented a novel framework based
on deep CNNs to segment the acute ischemic lesions in DWI.
To the best of our knowledge, it is the first fully automatic
method developed for this problem. The algorithm is validated
on a large real clinical dataset and achieves the state-of-the-art,
which is 0.67 in terms of the Dice coefficient in average. Sev-
eral visual examples of the segmentation results are shown in
Fig. 8.

Although the combination of EDD+MUSCLE Nets achieves
very good results, the proposed approach still has a few lim-
itations: First, semantic segmentation of objects in images in
multiple scales remain a challenge that it is not fundamentally
solved. Second, the training and testing is not end-to-end, which
decreases the system’s efficiency. Finally, in the second stage,
we only consider the false positives. However, there are still a
small number of false negatives which must be corrected.

In the future, further improvements could be achieved in
several aspects. In particular, more DW images should be col-
lected for training and testing. Our method is capable of auto-
matically generating acute ischemic lesion segmentations. Ex-
perts could create the manual annotations based on the auto-
matic segmentations, which will be less expensive in terms of
time and effort. In addition, the framework could be adapted so
that the end-to-end training is possible. Last but not least, con-
volutions in our proposed networks could be extended to 3D,
which may reduce more false positives. 3D convolutions re-
quire the image patches and/or volumes to be isotropic in 3D
[20, 22]. However, image slices in our dataset are very thick
and simple processes such as resampling cannot provide satis-
factory results. Therefore, we consider to employ image super



Dice m#FP m#FN mSFP mSFN DR
Decplab without CRI6 U | (35 1372 6o 852 580 100
FCN(28] e | 077 1556 462 102 316 1o
U-Nerf 39 e | 079 1297 456 1073 3871 1o
DeconNatl3) e | 079 1208 47 99 a7 1w
EDD Ne rse | 083 682 43 1038 506 1oo
EDDAMUSCLENet | 83 41 478 1090 558 100

Table 5: Performance comparison among adapted existing CNNs and our proposed CNNs on two subsets of testing dataset. One subset consisted of 271 subjects
with small lesions and the other one contained 90 subjects with large lesions. The results showed the EDD Net performed significantly better than existing CNN
architectures, particularly on the first subset. The MUSCLE Net further improved it by removing more false positives while maintaining true positives.

Running Time
Testing (s) Training (h)
Preprecessing | 0.20 +0.10 -

EDD Net 0.63 +0.07 26.61

Muscle Net 0.07+0.05 0.11
Total \ 0.90+0.12 26.72

Table 6: Running time of our proposed pipeline. The unit of time in testing
is second and it in training is hour. The numbers in testing are in the form of
meam=std while the training time was measured in once.

resolution techniques [36] to enhance the images in 3D. Then
3D convolutions can be used in our CNNs.
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Figure 8: The results of the proposed method. The first column shows the original DWI. The second column displays the manual annotations of the acute ischemic
lesions. The third column demonstrates the results given by the EDD Net. The last column illustrates the lesion segmentations refined by the MUSCLE Net.
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