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Abstract—Convolutional neural networks (CNNs) have revolu-1

tionized medical image analysis over the past few years. The U-2

Net architecture is one of the most well-known CNN architectures3

for semantic segmentation and has achieved remarkable successes4

in many different medical image segmentation applications.5

The U-Net architecture consists of standard convolution layers,6

pooling layers, and upsampling layers. These convolution layers7

learn representative features of input images and construct seg-8

mentations based on the features. However, the features learned9

by standard convolution layers are not distinctive when the differ-10

ences among different categories are subtle in terms of intensity,11

location, shape, and size. In this paper, we propose a novel12

CNN architecture, called Dense-Res-Inception Net (DRINet),13

which addresses this challenging problem. The proposed DRINet14

consists of three blocks, namely a convolutional block with dense15

connections, a deconvolutional block with residual Inception16

modules, and an unpooling block. Our proposed architecture17

outperforms the U-Net in three different challenging applications,18

namely multi-class segmentation of cerebrospinal fluid (CSF) on19

brain CT images, multi-organ segmentation on abdominal CT20

images, multi-class brain tumour segmentation on MR images.21

Index Terms—Convolutional neural network, medical image22

segmentation, brain atrophy, abdominal organ segmentation.23

I. INTRODUCTION24

Significant progress has been achieved in the field of25

medical image analysis in recent years due to the advent26

of CNNs [1]. Within medical imaging, the problem of im-27

age segmentation has been one of the major challenges.28

Segmentation is a pre-requisite for many different types of29

clinical applications, including brain segmentation [2], cardiac30

ventricle segmentation [3], abdominal organ segmentation [4],31

and cell segmentation in biological images [5]. In these32

applications, the results of the segmentation are usually used to33

derive quantitative measurements or biomarkers for subsequent34

diagnosis and treatment planning.35

Among the different approaches that use CNNs for medical36

image segmentation, the U-Net architecture [5] and its 3D37

extension [6] are widely used because of their flexible architec-38

tures. In the first part of the U-Net architecture (analysis path),39

deep features are learned while the second part of the U-Net40

architecture (synthesis path) performs segmentation based on41

these learned features. Training the two parts of the network42

in an end-to-end fashion yields good segmentation results. As43
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the number of features in the first part of network is reduced 44

because of convolutions and poolings, skip connections are 45

used to allow dense feature maps from the analysis path to 46

propagate to the corresponding layers in the synthesis part of 47

the network, which improves the performance significantly. 48

However, the limitation of the U-Net architecture is its scal- 49

ability. Specifically, deeper networks learn more representative 50

features and result in better performance. Adding more layers 51

to the network enlarges the parameter space, which allows the 52

network to learn more representative features. However, this 53

also increases the difficulties in training the network because 54

gradients are likely to vanish during training. Therefore, the 55

challenge is to make the network wider and deeper without 56

gradient vanishing. 57

In computer vision, the state-of-the-art CNN architec- 58

tures include the densely connected convolutional network 59

(DenseNet) [7], [8] and the Inception-ResNet [9]. The 60

DenseNet approach consists of a number of dense blocks with 61

pooling layers between them to reduce the size of the feature 62

maps. Within each dense block, layers are directly connected 63

with all of their preceding layers, which is implemented 64

via concatenation of feature maps in subsequent layers. This 65

dense architecture has a number of advantages: Firstly, the 66

concatenation of feature maps enables deep supervision so 67

that gradients are propagated more easily to preceding layers, 68

which makes the network training easier. Secondly, bottleneck 69

layers (convolution layers with 1-by-1 kernels) are used to 70

control the growth rate of parameters in the network. Finally, 71

in the DenseNet architecture the final classifier uses features 72

from all layers (instead of only features from the last layer as in 73

standard CNN approaches), leading to improved classification 74

performance. 75

The Inception network [10] is a CNN architecture which 76

uses the Inception modules and allows for very deep net- 77

works. The main purpose of the Inception modules are: 1) 78

to increase the depth and width of networks without adding 79

more parameters; and 2) to achieve multi-scale features for 80

processing. These are achieved by carefully designing struc- 81

tures of the Inception modules. The latest version of the 82

Inception architecture [9] also uses residual connections, i.e. 83

Inception-ResNet. Fig. 1 shows an overview of the Inception- 84

ResNet: a stem convolution block, stacks of inception and 85

reduction blocks, and the classifier. The stem block consists of 86

a number of standard convolution and pooling layers, reducing 87

the size of feature maps in lower layers (the ones close 88

to the input). This aims to be memory efficient in training 89

but is not strictly necessary. Each inception block consists 90

of number of inception modules. The reduction blocks are 91

inception modules with dimension reduction. An inception 92

module consists of a number of branches of convolution 93
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layers. In each branch, a bottleneck layer reduces the number94

of feature maps. The feature maps are then processed by95

convolution layers with different sizes of kernels in different96

branches. The output of all branches are finally aggregated as97

the output of the inception module.98

Fig. 1. The overall schema of the Inception-ResNet [9]. The whole architec-
ture consists of some Inception and Reduction blocks. Each block contains a
number of modules. The detailed structures in different blocks vary slightly.

Inspired by the DenseNet and the Inception-ResNet, we99

propose an architecture consisting of dense connection blocks,100

residual Inception blocks, and unpooling blocks. We term this101

architecture Dense-Res-Inception Net (DRINet). We apply the102

proposed DRINet architecture for three challenging clinical103

segmentation problems, namely multi-class segmentation of104

brain CSF in CT images, abdominal multi-organ segmenta-105

tion in CT images, and brain tumour segmentation (BraTS)106

in multi-modal MR images. The former two problems are107

based on clinical datasets while the last one is based on108

a publically benchmark dataset. Our main contributions are:109

1) a novel combination of the dense connections with the110

inception structure to address segmentation problems. The111

use of dense connection blocks, residual inception blocks,112

and the unpooling blocks achieve high performance while113

maintaining computational efficiency; 2) easy and flexible114

implementation of the proposed network architecture; 3) state-115

of-the-art segmentation performance for challenging image116

segmentation tasks.117

II. RELATED WORK118

The basic CNN architecture for many semantic segmenta-119

tion problems is the fully convolutional network (FCN), shown120

in Fig. 2(a), which consists of cascaded convolution, pooling,121

and deconvolution layers. Convolution and pooling layers form122

the analysis path while the convolution and deconvolution123

layers form the synthesis path. The analysis path and the124

synthesis path are usually symmetric.125

The U-Net (Fig. 2(b)) is the FCN with skip layers between126

layers in analysis path and synthesis path. The skip layers127

are implemented via concatenations and they allow deep128

supervision for the network. As such, the errors can propagate129

easily through the network. Therefore, the skip layers improve130

the network performance. In addition, residual connections can131

be used in the U-Net, which results in the Res-U-Net (Fig.132

2(c)). In the Res-U-Net, the residual learning is implemented133

using the bottleneck building blocks with residual connections,134

which were used in the ResNet-50/101/152 architectures [11].135

The DeepLab approach [12] involved atrous convolutions136

and poolings within the CNN architecture to solve segmenta-137

tion problems, as well as conditional random field (CRF) mod-138

els for post processing. Based on the DeepLab architecture,139

Chen et al. [13] proposed the latest DeepLabV3 architecture. 140

In DeepLabV3, a simple synthesis path is used. This synthesis 141

path only consists of very few convolution layers, which is 142

different from the synthesis path used in the FCN and the U- 143

Net architectures. Skip connections are used to connect the 144

analysis path and the synthesis path. 145

The DenseNet was extended in a fully convolutional fashion 146

so that it can be used for segmentation tasks [14]. Specifically, 147

an upsampling transition module was proposed in correspon- 148

dence to the downsampling transition module in the original 149

DenseNet. In addition, the macro-architecture of the fully 150

convolutional DenseNet is similar to the U-Net where skip 151

connections are used. 152

Finally, the Pyramid Scene Parsing Network (PSPNet) [15] 153

was proposed to solve the challenging scene parsing problem. 154

In the scene parsing problem, prior knowledge could be 155

incorporated in CNNs to improve performance. For example, 156

cars are likely to be on the road while they should not be in the 157

sky. Global context is required to incorporate these priors. The 158

pyramid pooling module in the PSPNet investigate features in 159

multiple levels, achieving the state-of-the-art performance. 160

III. DRINET 161

A. Overview 162

Fig. 2(d) demonstrates our proposed DRINet architecture. 163

Similar to the FCN, the DRINet has an analysis path and a 164

synthesis path. Stacks of dense connection blocks, instead of 165

standard convolution layers make up the analysis path, which 166

is inspired by the DenseNet. The synthesis path consists of 167

residual inception blocks and unpooling blocks, which are 168

inspired by the Res-Inception Net. To be more efficient in 169

terms of memory, the DRINet has no skip connections. 170

B. Dense connection block 171

We employ convolutional dense connection blocks [7] in 172

the analysis path, which are shown in Fig. 3. Formally, 173

let us assume xl is the output of the lth layer and f(·) 174

is a convolution function followed by batch normalization 175

(BN) [16] and rectified linear unit (ReLU). In the standard 176

convolution layer, we have: 177

xl+1 = f(xl) (1)

while in the dense connection block [7] we have 178

xl+1 = f(xl) ◦ xl. (2)

Here ◦ indicates concatenation. 179

The number of output channels from standard convolution 180

layers are usually fixed and typically 64 or 128. As a result, 181

it is expensive in terms of memory to concatenate the outputs 182

of preceding convolution layers. In addition, the concatenation 183

also leads to many redundant features. Therefore, Huang et al. 184

[7] propose to use 1×1 convolutions to reduce the output size. 185

As shown in Fig. 3, within a dense connection block, the size 186

of the output channel for each convolution layer ki is typically 187

small, e.g. 12 or 24 and this is commonly referred to as the 188

growth rate of the network. 189
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Fig. 2. Overview of the FCN, the U-Net, the Res-U-Net and the DRINet. DC block and RI block represent the dense connection block and the residual
Inception block. In the DRINet, the DC, RI, and unpooling blocks are depicted in Fig. 3, 4, and 5, respectively. In the Res-U-Net, the residual convolution
means the bottleneck building block used in the ResNet-50/101/152 [11].

Fig. 3. A dense connection block contains m convolution layers. The output channel number of each convolution layer ki is the growth rate. BN and ReLU
apply on every convolution layer. The input and output of a convolution layer is concatenated so deep supervision is allowed.

Using dense connection blocks in the analysis path leads190

to three major advantages: 1) Gradient propagation through191

the network is more efficient. Conventionally, it is difficult192

to ensure that gradients backpropagate to lower layers in the193

network. Therefore, it is important to use dense connection194

blocks to alleviate the effect of vanishing gradients. 2) The195

input to the synthesis path consists of feature maps output from196

all preceding layers, instead of only the last layer, which reuses197

the feature maps. 3) It is easy to use the growth rate to control198

the parameter space, resulting in good network performance.199

The latter two advantages will be verified in the following200

experiments.201

C. Residual Inception block202

In the synthesis path of the DRINet, we propose to use203

the residual Inception blocks, which is depicted in Fig. 4.204

Similar to the original inception modules [10], the idea is205

to aggregate feature maps from different branches, where the206

input feature maps are convolved using kernels in different207

Fig. 4. A residual Inception block is an Inception module with residual
connections. An Inception module is a weighted combination of features
maps from a few branches. Each branch process the input feature maps using
deconvolutions with different kernel sizes.

sizes. The residual connections make the learning easier since 208

a residual inception block learns a function with reference to 209

the input feature maps, instead of learning an unreferenced 210

function. 211
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In terms of the kernel sizes in convolutions, it is difficult to212

determine the optimal size for each convolution. In the FCN213

and the U-Net, the kernel size of convolutions is fixed as 3×3.214

In the inception module, convolutions of different kernel sizes215

are used in parallel. In implementation, the feature maps are216

combined using concatenation and a deconvolution layer with217

1× 1 kernel learns the combination weights. The deconvolu-218

tions are transposed convolutions. In the proposed Inception219

modules, deconvolutions work the same as the convolutions.220

The purpose of this is to differentiate with convolutions in the221

analysis path in symbols.222

Unlike the Inception Res-Net [9] having various inception223

modules, we propose to use identical inception blocks in the224

DRINet, which is easy to implement. We propose to aggregate225

feature maps convolved by three kernels, namely 1× 1, 3× 3,226

and 5 × 5. Inspired by the DeepLab [17], the deconvolution227

with a 5×5 kernel is replaced by a dilated deconvolution with a228

3×3 kernel, which is more efficient in memory. To further limit229

the size of the parameter space, a bottleneck deconvolution is230

used in each branch.231

Formally, let g(·) denotes a deconvolution function followed232

by BN and ReLU and gb(·) and gd(·) represent bottleneck and233

dilated deconvolution respectively. As a result we obtain234

xl+1 = gb(gb(xl) ◦ g(gb(xl)) ◦ gd(gb(xl))) + xl. (3)

D. Unpooling block235

Fig. 5. An unpooling block is a mini Inception module and it upsamples the
input feature maps.

We propose an unpooling block shown in Fig. 5 to upsample236

the feature maps in the synthesis path. The unpooling block237

can be viewed as a mini inception module, which combines238

upsampled feature maps from two branches. In each branch,239

the input feature maps are convolved using kernels in different240

sizes, namely 1 × 1 and 5 × 5. The resulting feature maps241

are then upsampled using a deconvolution layer with stride242

2. Again, the deconvolution with a 5 × 5 kernel is replaced243

by a dilated deconvolution with a 3 × 3 kernel in order244

to ensure memory efficiency. Also, to limit the parameter245

space, the input feature maps are firstly convolved by a246

bottleneck layer in each branch, which is similar to the residual247

inception block. The combination of upsampled feature maps248

is achieved via concatenation. Formally, let g2(·) denotes the249

deconvolution function with stride 2. The upsampled feature250

maps are therefore:251

xl+1 = g2(gb(xl)) ◦ g2(gd(gb(xl))). (4)

The major advantage of the proposed unpooling block is the252

aggragation of different upsampled feature maps. Specifically,253

simply upsampling the input feature maps using a deconvo- 254

lution layer is likely to produce errors. For instance, a small 255

error in the input feature maps is likely to be enlarged, which 256

finally results in errors in the segmentation results. In contrast, 257

convolving the input feature maps with different kernels leads 258

to different intermediate feature maps. Upsampling these fea- 259

ture maps separately and combining them together reduce the 260

effect of errors. 261

E. Evaluation metrics 262

In multi-class segmentation on brain CSF and abdominal 263

organs, we use the well-known Dice coefficient as well as sen- 264

sitivity (SE) and precision (PR) for evaluation. In evaluation 265

in the BraTS challenge, we use the same metrics used in the 266

challenge, namely the Dice coefficient, the SE, the specificity 267

(SP), and the Hausdorff95 distance. The Hausdorff95 distance 268

is a robust version of the standard Hausdorff distance, which 269

measures 95 quantile of the distance between two surfaces, 270

instead of the maximum. 271

F. Implementation details 272

In this work, we use cross-entropy as the loss function for all 273

networks. We use the Adam method [18] for optimization with 274

the following parameters: β1 = 0.9, β2 = 0.999, ε = 1e − 8. 275

An initial learning rate of 1e−3 is utilized. The weights are all 276

initialised from a truncated normal distribution of standard de- 277

viation of 0.01. Batch normalization [16] layers are employed 278

in all convolution and deconvolution layers except the last 279

convolution/deconvolution layer. There are three convolution 280

layers in each dense connection block and the kernel size 281

is 3 × 3 with stride 1. There are three residual inception 282

modules in each residual Inception block. For the standard 283

deconvolution layers in the residual Inception module, the 284

kernel size is 3 × 3 and the stride is 1. All networks used 285

in this paper are implemented on the Tensorflow1 platform. 286

IV. EXPERIMENTS AND RESULTS 287

A. CSF segmentation in CT images 288

Overview: Assessment of CSF volume, within ventricles 289

and cortical sulci, is important for numerous neurological 290

and neurosurgical applications. In many applications where 291

rapid assessment is required (e.g. stroke), CT is preferred over 292

MRI [19]. A common condition requiring the quantification of 293

CSF is hydrocephalus (ventricular enlargement), a potentially 294

life-threatening, but reversible condition; caused by a wide 295

range of pathologies including hemorrhage, edema or tumours 296

[20]. In these cases, CSF space quantification, especially 297

comparison of ventricular to sulcal compartments, is important 298

for distinguishing hydrocephalus from atrophy (due to age- 299

related ischemia or degeneration) [21]. Standard quantification 300

methods rely upon simple measurement of ventricular spans 301

[22]. However, given the complex ventricular shape, these 302

are imprecise, vary between observers and do not allow for 303

accurate estimation of sulcal CSF [23]. 304

1https://www.tensorflow.org/
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The challenges for multi-class CSF segmentation in CT305

are three-fold: 1) clinical CT images are often acquired as306

stacks of 2D image slices with large slice thickness. Thus,307

each slice is usually separately analyzed, however the position308

of the patient’s head is usually highly variable. Therefore,309

the CSF on each 2D image slice can vary significantly in310

terms of its configuration and shape; 2) patients often have311

background disease (e.g. old infarcts) which can have similar312

intensities to CSF. 3) at the borders of different categories of313

CSF, segmentation errors often occur. Many existing methods314

[24]–[32] are not robust to these problems. To the best of our315

knowledge, this is the first attempt to solve the multi-class316

CSF segmentation problem in CT images.317

Dataset: CT scans from 133 stroke patients were collected318

from two local hospitals. All clinical CT scans were collected319

retrospectively from local PACS databases and anonymized320

before performing research. Ethical approval was obtained321

from the Imperial College Joint Research Office. The scans322

were acquired on three types of CT scanners (GE, Siemens,323

and Toshiba). The thicknesses of image slices range from324

1mm to 7mm and the voxel spacing in plane is approximately325

0.4 × 0.4mm. The image size is 512 × 512. Table I displays326

the demographic information of the patients.327

The training and validation datasets consist of 781 2D image328

slices randomly chosen from 101 subjects. 500 of these images329

were used for training and 281 for validation. A separate test330

set containing 32 subjects was used. The training, validation,331

and testing datasets were manually annotated by a human332

expert. The CSF was segmented into three categories: 1) CSF333

in the ventricles, 2) CSF in the cerebral cortical sulci, fissures,334

arachnoid cysts, and 3) other CSF spaces, namely: basal and335

brainstem cisterns, cerebellar sulci, infratentorial arachnoid336

cysts. For these image slices, a threshold was chosen to obtain337

a coarse segmentation on the whole CSF and then the expert338

edited them using the MRICron software2. The suprasellar cis-339

tern was bisected, such that CSF anterior to a line joining the340

bilateral anterior most parts of the cerebral peduncles/midbrain341

was classified within the cerebral compartment (reflecting342

atrophy of medial temporal and orbitofrontal cortices, and343

including Sylvian cisterns); while CSF posterior to this line344

(including interpeduncular, crural and ambient cisterns) was345

classified within the third cisternal compartment.346

TABLE I
DEMOGRAPHICS OF PATIENTS IN THE CSF SEGMENTATION EXPERIMENT.
THE NIHSS IS THE NATIONAL INSTITUTES OF HEALTH STROKE SCORE
WHICH MEASURES PATIENTS’ FUNCTIONAL SEVERITY ON ADMISSION.

Age (years) mean±std 71± 14
range 28-94

Gender male % 52.63

NIHSS mean±std 10± 6.03
range 1-27

Pre-processing and augmentation: In this work, we do347

not perform resampling on the CT images. This is because the348

thickness of the clinical CT images is large (up to 7mm) and349

2https://people.cas.sc.edu/rorden/mricron/index.html

resampling the images can introduce inaccuracies and interpo- 350

lation artefacts. In terms of the image intensity normalization, 351

we employed the similar strategy as described in [17]. We 352

normalized CT images on a per slice basis. This means for 353

each slice, background (i.e. air, bone) was excluded and the 354

remaining intensities were normalized to zero mean and unit 355

deviation. We randomly cropped 128× 128 patches from the 356

slice to construct the training set. In this way, the training set 357

contains sufficient number of patches. As our CNNs are fully 358

convolutional, in the testing stage, the input can be the entire 359

image slice. 360

Results: We use the FCN, the U-Net, and the Res-U-Net as 361

baselines. The baseline networks are compared to the DRINet 362

with various growth rates. The results are displayed in Table 363

II. 364

The FCN and the U-Net perform similarly well in terms of 365

Dice. The results suggest that segmenting the CSF in ventricles 366

is relatively easy while segmenting CSF around brainstem is 367

challenging. As depicted in Fig. 6, the CSF around brainstem 368

is likely to be misclassified. In addition, the skip connections 369

in the U-Net do not improve the segmentation results in this 370

case. 371

Changing the U-Net architecture into the Res-U-Net archi- 372

tecture makes the network deeper and reduces the number of 373

training parameters. According to [11], this change should 374

only marginally influence on the results. However, the Dice 375

score of the CSF around brainstem decreases under the Res- 376

U-Net architecture. This result indicates that reducing param- 377

eters is problematic although the network uses the residual 378

connections. 379

The growth rate is the key hyper-parameter in the DRINet 380

because it controls the network parameter space and per- 381

formance. Changing the growth rate allows to compare the 382

performance between baseline networks and the DRINets with 383

a similar number of parameters. Table II shows the results 384

evaluating the effects of growth rate. The DRINet with a 385

growth rate of 12 has a similar number of parameters as the 386

Res-U-Net. This DRINet segments the CSF around brainstem 387

significantly better than the Res-U-Net. The DRINet with a 388

growth rate 24 is comparable to the FCN and the U-Net in 389

terms of the size of parameter space. It performs better than 390

the FCN and the U-Net in terms of the CSF in ventricles 391

and around brainstem. If the growth rate increases to 48, 392

the DRINet performs best in all three parts of the CSF 393

segmentation, as well as the whole CSF segmentation. When 394

the growth rate becomes very large (e.g. 64), the DRINet 395

is likely to overfit and the performance decreases. In the 396

following experiments, a growth rate of 48 is used. 397

Huang et al. [8] noted that a larger growth rate in the higher 398

layers is beneficial for the performance of network. In our 399

experiments, we evaluate this strategy using growth rates like 400

12, 24, 36, 48 in each dense connection block. Comparing 401

DRINets using identical growth rate and increasing growth 402

rates, which have similar number of parameters, the DRINets 403

using increasing growth rates do not perform significantly 404

better in any part of CSF segmentations. 405

Run time: Pre-processing was performed on a desktop 406

PC with an Core i7-3770 processor and 32GB RAM. CNNs 407
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TABLE II
PERFORMANCE COMPARISON AMONG THE BASELINE CNNS AND THE DRINET WITH DIFFERENT GROWTH RATES. THE NUMBERS UNDER THE DRINET

INDICATE THE GROWTH RATES IN EACH DENSE CONNECTION BLOCK.

Dice (%) SE (%) PR (%) # paramsVentricles Cortex Brainstem Total Ventricles Cortex Brainstem Ventricles Cortex Brainstem

FCN val 83.29 76.71 80.74 84.16 90.17 80.06 79.48 93.47 85.13 83.19 2.71Mtest 92.89 89.01 85.25 90.91 92.86 88.50 86.73 94.76 91.18 84.52

U-Net [5] val 82.67 76.10 80.45 84.65 90.07 83.72 78.50 93.24 82.60 83.28 2.91Mtest 92.45 89.18 85.20 91.03 92.18 91.70 85.31 94.44 88.22 85.73

Res-U-Net val 81.66 73.99 76.34 84.15 89.72 79.48 75.84 92.84 85.50 81.67 0.96Mtest 91.64 88.73 82.94 90.76 91.54 87.67 82.43 93.81 91.39 84.34
DRINet val 84.98 76.87 86.72 82.96 87.24 75.47 76.99 95.87 89.49 88.71 0.85M12,12,12,12 test 92.13 87.77 86.08 89.37 88.76 82.78 82.99 97.52 95.75 90.29
DRINet val 85.08 80.70 90.87 84.44 91.32 79.67 82.57 93.21 87.12 85.58 2.80M24,24,24,24 test 93.84 89.97 88.40 91.27 94.78 88.34 89.55 94.27 93.23 87.91
DRINet val 85.00 80.19 90.08 84.67 89.97 81.73 81.18 94.30 85.57 86.71 5.85M36,36,36,36 test 93.70 90.33 88.48 91.52 92.80 90.23 88.22 96.20 91.93 89.45
DRINet val 87.39 80.00 91.08 84.89 91.06 82.36 82.18 93.59 85.29 86.74 10.03M48,48,48,48 test 94.28 90.64 88.96 91.85 94.19 91.00 89.39 95.55 91.74 89.24
DRINet val 86.97 79.95 90.58 84.62 90.63 80.51 81.15 93.96 86.64 88.33 17.33M64,64,64,64 test 94.15 90.20 88.96 91.53 94.27 88.78 87.43 95.37 93.37 91.28
DRINet val 85.74 79.38 87.92 84.55 90.88 81.81 82.21 93.50 85.40 85.21 4.11M12,24,36,48 test 93.87 90.26 88.15 91.50 93.95 90.32 88.91 95.38 91.77 88.15
DRINet val 86.98 79.63 90.84 84.69 93.90 85.75 87.32 90.74 81.58 81.30 8.03M24,36,48,64 test 94.27 90.16 88.82 91.51 94.19 89.53 87.83 95.68 92.45 90.53
DRINet val 86.45 80.08 89.68 84.72 89.86 80.96 82.10 94.58 86.43 87.22 13.70M36,48,64,80 test 93.76 90.27 88.82 91.46 92.44 89.38 88.59 96.64 92.79 89.76

were trained and tested on an NVIDIA TITAN XP GPU408

processor except for the DRINets with large growth rates409

(e.g. 48, 64), which were trained on two GPUs to keep the410

batch size sufficiently large. On average it took 44.46s for the411

DRINet to segment the CSF in one image. The training time412

of the DRINet with the best performance was 21.37 hours. In413

contrast, the U-Net is faster with 11.44 hours for training and414

23.56s per image for testing. Although the DRINet is slower,415

its run time is acceptable.416

B. Multi-organ segmentation417

Overview: Segmenting abdominal organs is important for418

clinical diagnosis and surgery planning [33]. There are two419

major challenges in the multi-organ segmentation problem:420

1) Abdominal organs are highly deformable and mobile and421

therefore can have various shapes and sizes; 2) the contrast422

between organs is often poor making it difficult to identify423

boundaries between organs.424

Abdominal organ segmentation is a popular topic for which425

many solutions have been proposed. Many methods were426

based on statistical shape models [34] or multi-atlas segmen-427

tation [34]–[38]. Using recent deep learning approaches, the428

segmentation accuracy has significantly improved, particularly429

for smaller organs (e.g. pancreas). Furthermore, deep learning430

approaches are much faster than conventional methods [4],431

[39], [40].432

Dataset: 3D abdominal CT scans were used in this exper-433

iment to evaluate the performance of the DRINet. Image ac-434

quisition parameters and patient demographics for the dataset435

used here can be found in [37].436

Pre-processing and augmentation were carried out in similar437

manner to those for CSF segmentation. The only difference is438

that in the CSF segmentation, the image intensity normaliza- 439

tion is performed per slice while in this multi-organ segmen- 440

tation task, the image intensity is normalized per volume. The 441

128 × 128 image patches were randomly cropped to develop 442

the training set. 443

We used the same the experimental settings and CNN con- 444

figurations as in the previous experiments, so no parameters 445

tuning is performed in this experiment. The purpose is to 446

validate the flexibility of the DRINet. Therefore, we only 447

split the whole dataset into a training set (75 subjects) and 448

a separate testing set (75 subjects). 449

Baseline: Again, the U-Net and the Res-U-Net are used 450

as baselines. Table III displays the segmentation results. The 451

performance of the U-Net and the Res-U-Net is comparable. 452

The Res-U-Net provides better PR but worse SE than the U- 453

Net in segmenting the pancreas and kidneys. As mentioned 454

above, the pancreas is the most challenging organ to segment 455

because of its thin and various structure. The strength of the 456

proposed DRINet is demonstrated by the fact that it is able 457

to segment the challenging organs significantly better than the 458

baseline CNNs approaches. 459

Comparison with existing methods: We compare the 460

DRINet with existing methods evaluated on the same dataset. 461

[36] and [37] proposed methods based on conventional ma- 462

chine learning approaches. According to the results (displayed 463

in Table IV) they have achieved fairly good segmentations in 464

terms of kidneys, liver, and spleen. The method proposed by 465

Tong et al. [37] is much faster than the one proposed by Wolz 466

et al. [36]. The 3D FCN proposed by Roth et al. [4] is the 467

state-of-the-art method based on deep CNNs. It is clear that the 468

3D FCN achieves significantly better results in the pancreas 469

segmentation. Furthermore the inference time is significantly 470
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Fig. 6. The visual examples of multi-class CSF segmentations. The first column displays the original images. The second column shows the manual references.
The following columns demonstrate the segmentations of the U-Net, the Res-U-Net, and the DRINet.

TABLE III
PERFORMANCE COMPARISON AMONG THE U-NET, THE RES-U-NET AND THE DRINET. THE DRINET OUTPERFORMED THE BASELINE CNNS,

PARTICULARLY IN TERMS OF THE PANCREAS.

Dice (%) SE (%) PR (%)
Pancreas Kidneys Liver Spleen Pancreas Kidneys Liver Spleen Pancreas Kidneys Liver Spleen

U-Net [5] 80.09 95.80 94.70 94.72 74.89 95.86 92.79 93.13 87.98 95.85 96.65 95.98
Res-U-Net 79.09 95.41 96.20 94.71 72.41 93.72 96.15 92.92 89.49 97.28 96.26 95.94
DRINet 83.42 95.96 96.57 95.64 80.29 95.84 96.69 95.63 87.95 96.20 96.47 96.13

reduced. However, in terms of the other organs, namely the471

kidneys, liver, and spleen, the 3D FCN did not offer significant472

improvements.473

The DRINet outperforms the 3D FCN achieving the state-474

of-the-art based on this dataset. Specifically, it improves the475

pancreas segmentation further from the 3D FCN. In addition,476

the DRINet promotes the segmentation on other organs as477

well. Note that the DRINet is only based on 2D image478

slices without using 3D contextual information. Therefore, this479

experiments verifies the DRINet is powerful and robust in the480

multi-organ segmentation problem.481

TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS. IT IS
CLEAR THAT THE DRINET IS SUPERIOR TO THE EXISTING METHODS.

Dice (%) Time (h)Pancreas Kidneys Liver Spleen
Wolz et al. [36] 69.60 92.50 94.00 92.00 51
Tong et al. [37] 69.80 93.40 94.90 91.90 0.5
Roth et al. [4] 82.20 - 95.40 92.80 0.07
DRINet 83.42 95.96 96.57 95.64 0.02

C. Brain Tumour Segmentation 482

Overview: Brain tumours are routinely diagnosed using 483

multi-modal MRI, including native T1-weighted (T1), post- 484
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Fig. 7. The visual examples of abdominal multi-organ segmentations. The first column displays the original images. The second column shows the manual
references. The following columns demonstrate the segmentations of the U-Net, the Res-U-Net, and the DRINet.

contrast T1-weighted (T1-Gd), T2-weighted (T2), and T2 fluid485

attenuated inversion recovery (FLAIR) image sequences [41].486

Quantification of the tumours based on the multi-modal MRI487

benefits the diagnosis and treatment [42]. Segmenting tumours488

into necrotic and non-enhancing tumours, the peritumoral489

edema, and gadolinium enhancing tumours has been a popular490

research topic [43].491

Dataset: We propose to use the training dataset of the492

BraTS 2017 challenge. There are 285 subjects in total and we493

randomly select 50 for training and the remaining 235 ones494

for testing. The segmentation is based on 2D patches of size495

of 64×64. Since the training patch size is smaller compared to496

that in the previous experiments, all CNNs in this experiments497

have two downsampling and upsampling process and all the498

other network configurations are fixed. According to [43], the499

images have been preprocessed: images were co-registered500

into the same anatomical template; skulls were stripped; voxels501

were resampled to isotropic resolution (1mm3). We normalise502

the image intensities into zero mean and unit deviation. No503

post-processing trick is used in any case. The evaluation is504

based on the whole tumour region, the tumour core region,505

and the enhancing tumour core region, instead of individual506

tumour structures.507

Results: On this benchmark dataset, we evaluate the three508

key components of the DRINet: the dense connection block,509

the residual Inception block, and the unpooling block. We set510

the FCN as the baseline CNN and separately add one of the511

proposed blocks to verify its contribution. We also compare512

their performance with the U-Net and the DRINet.513

Table V shows the results: In terms of the whole tumour514

structure, the added blocks do not affect the Dice scores signif-515

icantly. The dense connection block and the residual Inception 516

block increase the sensitivity and the Hausdorff distances and 517

decrease the specificity, which means they increase the number 518

of false positives (FPs). In contrast, the unpooling block 519

decreases the sensitivity and Hausdorff distance and increases 520

the specificity, which means it reduces FPs but introduces FNs. 521

Combining them together results in a trade-off between FNs 522

and FPs. Therefore, the overall performance increases. 523

In terms of the tumour core and enhanced core, the three 524

blocks increase the Dice scores and specificity while decreas- 525

ing their sensitivity and Hausdorff distances. This means the 526

overall performance for the segmentation of the tumour core 527

and the enhanced core is improved. However, since their sizes 528

are fairly small, some FNs occur. 529

The DRINet with three powerful blocks achieves better 530

segmentation results than the U-Net in terms of the dice scores, 531

the sensitivity, and the Hausdorff distances. Regarding the Res- 532

U-Net, since the parameter space is small, it cannot perform 533

as well as the U-Net in this case. Fig. 8 shows that the training 534

error of the Res-U-Net is larger than that of the U-Net and 535

the DRINet. Therefore, the Dice coefficients given by the 536

Res-U-Net on tumours are the worst among all the CNNs. 537

According to the low sensitivity, the high specificity, and the 538

low Hausdorff distance, it is clear that the segmentation results 539

by the Res-U-Net have many FNs but few FPs. 540

V. DISCUSSION AND CONCLUSION 541

In this paper, a novel CNN architecture, DRINet, is pro- 542

posed. The DRINet has three key features, namely the use 543

of dense connection blocks, residual inception blocks, and the 544

unpooling blocks. These blocks deepen and widen the network 545
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TABLE V
THE SEGMENTATION RESULTS OF DIFFERENT NETWORKS. THE ENTRIES IN BOLD HIGHLIGHT THE BEST COMPARABLE RESULTS.

Network Dice (%) SE (%) SP (%) Hausdorff95 (mm)
Whole Core Enh. Whole Core Enh. Whole Core Enh. Whole Core Enh.

U-Net [5] 81.51 71.30 63.05 81.69 72.51 79.70 99.86 99.92 99.94 42.07 34.44 36.46
Res-U-Net 71.50 67.75 60.06 60.25 66.06 68.27 99.97 99.93 99.97 21.98 25.00 27.56
FCN 81.42 70.4 61.49 80.84 77.12 80.76 99.85 99.80 99.92 42.19 47.24 44.08
FCN+dense 81.09 71.98 63.29 84.90 74.81 78.56 99.80 99.91 99.95 48.34 39.36 36.56
FCN+RI 81.89 72.30 63.25 85.26 74.29 78.02 99.82 99.91 99.95 47.38 36.49 33.97
FCN+unpool 81.81 71.43 63.93 78.56 70.53 75.80 99.91 99.94 99.96 33.37 28.39 27.12
DRINet 83.47 73.21 64.98 84.53 74.93 80.35 99.86 99.92 99.94 36.4 25.59 30.31

Fig. 8. The training error comparisons among different CNNs.

significantly and the parameter space can be controlled via546

the growth rate. The gradient propagation is improved due547

to the dense connections and residual connections. As a548

result, the performance of the DRINet is significantly im-549

proved when compared to the standard U-Net. In addition,550

the DRINet architecture is highly flexible: Within a block, the551

convolution/deconvolution layers can be changed adaptively.552

It is therefore easy to integrate the blocks into other CNN553

architectures.554

In this paper, we focus on evaluating the performance555

of the proposed DRINet and each of its components. The556

segmentation results of each problem can be improved using557

some domain knowledge and post-processing. For instance, in558

the brain CSF segmentation problem, a brain mask could be559

added. In the abdominal organ segmentation task, 3D contex-560

tual information could be included. In the BraTS problem, the561

CRF model could be used to remove FPs.562

Among the three experiments, the multi-class CSF segmen-563

tation on CT images is novel. To the best of our knowledge,564

we are the first to attempt on this problem and the proposed565

DRINet results in good segmentation. In the future, we plan566

extend the proposed approach to segment lesions as well as567

CSF using a single DRINet. This is useful in clinical settings568

for prognostication after stroke [44] or estimating cerebral569

haemorrhage risk [45], [46].570

In the context of abdominal multi-organ segmentation, the571

DRINet achieves very good results although the segmentation572

is based on 2D CT image slices. Our results show that the573

DRINet improves the segmentation on small and various574

organs like pancreas as well as big organs like liver. It is575

of interest to extend its ability to segment more challenging 576

organs such as arteries and veins, which could make the 577

DRINet more useful in clinics. 578

A limitation of the DRINet approach is that the increase 579

of the growth rate results in many more parameters, which 580

may lead the training more difficult and testing slower. In the 581

future, the research could focus on simplifying the network 582

structure while maintaining its ability. 583
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